Discreteness-induced Stochastic Steady State in Reaction Diffusion Systems: Self-consistent Analysis and Stochastic Simulations
نویسندگان
چکیده
A self-consistent equation to derive a discreteness-induced stochastic steady state is presented for reactiondiffusion systems. For this formalism, we use the so-called Kuramoto length, a typical distance over which a molecule diffuses in its lifetime, as was originally introduced to determine if local fluctuations influence globally the whole system. We show that this Kuramoto length is also relevant to determine whether the discreteness of molecules is significant or not. If the number of molecules of a certain species within the Kuramoto length is small and discrete, localization of some other chemicals is brought about, which can accelerate certain reactions. When this acceleration influences the concentration of the original molecule species, it is shown that a novel, stochastic steady state is induced that does not appear in the continuum limit. A theory to obtain and characterize this state is introduced, based on the self-consistent equation for chemical concentrations. This stochastic steady state is confirmed by numerical simulations on a certain reaction model, which agrees well with the theoretical estimation. Formation and coexistence of domains with different stochastic states are also reported, which is maintained by the discreteness. Relevance of our result to intracellular reactions is briefly discussed.
منابع مشابه
Molecular discreteness in reaction-diffusion systems yields steady states not seen in the continuum limit.
We investigate the effects of the spatial discreteness of molecules in reaction-diffusion systems. It is found that discreteness within the so-called Kuramoto length can lead to a localization of molecules, resulting in novel steady states that do not exist in the continuous case. These states are analyzed theoretically as the fixed points of accelerated localized reactions, an approach that wa...
متن کاملDiscreteness-induced concentration inversion in mesoscopic chemical systems.
Molecular discreteness is apparent in small-volume chemical systems, such as biological cells, leading to stochastic kinetics. Here we present a theoretical framework to understand the effects of discreteness on the steady state of a monostable chemical reaction network. We consider independent realizations of the same chemical system in compartments of different volumes. Rate equations ignore ...
متن کاملAlmost sure exponential stability of stochastic reaction diffusion systems with Markovian jump
The stochastic reaction diffusion systems may suffer sudden shocks, in order to explain this phenomena, we use Markovian jumps to model stochastic reaction diffusion systems. In this paper, we are interested in almost sure exponential stability of stochastic reaction diffusion systems with Markovian jumps. Under some reasonable conditions, we show that the trivial solution of stocha...
متن کاملLongest Path in Networks of Queues in the Steady-State
Due to the importance of longest path analysis in networks of queues, we develop an analytical method for computing the steady-state distribution function of longest path in acyclic networks of queues. We assume the network consists of a number of queuing systems and each one has either one or infinite servers. The distribution function of service time is assumed to be exponential or Erlang. Fu...
متن کاملSwitching Dynamics in Reaction Networks Induced by Molecular Discreteness
To study the fluctuations and dynamics in chemical reaction processes, stochastic differential equations based on the rate equation involving chemical concentrations are often adopted. When the number of molecules is very small, however, the discreteness in the number of molecules cannot be neglected since the number of molecules must be an integer. This discreteness can be important in biochem...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004